
Real-Time Reyes
Analysis of a Programmable Rendering Pipeline

Anjul Patney, Stanley Tzeng and John D. Owens

University of California, Davis

Overview

• Introduction to Reyes

• Reyes IS the next big thing

• Reyes IS NOT the next big thing

• Conclusion

Introduction to Reyes

Image courtesy: Pixar Animation Studios

High Geometric Detail

Complex Shading

Photorealistic Effects

How to represent such high detail?

Image courtesy: Pixar Animation Studios

Micropolygons

• 1x1 pixel (approx.) quads

– Resolution-independent!

– Defined in object space

• Allow detailed shading

– Similar to fragments

• Fundamental units of Reyes
Rendering

Pipeline Overview

Subdivision / TessellationSubdivision / Tessellation

ShadingShading

Rasterization / SamplingRasterization / Sampling

Composition and FilteringComposition and Filtering

Scene

Image

Pipeline Overview

Obtain micropolygons
from input surfaces

Subdivision / TessellationSubdivision / Tessellation

ShadingShading

Rasterization / SamplingRasterization / Sampling

Composition and FilteringComposition and Filtering

Scene

Image

Pipeline Overview

Shade micropolygons in
world space

Subdivision / TessellationSubdivision / Tessellation

ShadingShading

Rasterization / SamplingRasterization / Sampling

Composition and FilteringComposition and Filtering

Scene

Image

Pipeline Overview

Map micropolygons to
pixel samples

Subdivision / TessellationSubdivision / Tessellation

ShadingShading

Rasterization / SamplingRasterization / Sampling

Composition and FilteringComposition and Filtering

Scene

Image

Pipeline Overview

Reconstruct pixels from
obtained samples

Subdivision / TessellationSubdivision / Tessellation

ShadingShading

Rasterization / SamplingRasterization / Sampling

Composition and FilteringComposition and Filtering

Scene

Image

Why is Reyes better?

• Smooth Surfaces

– Pixel-level detail

– Foliage, hair

• Stochastic Sampling

– Anti-Aliasing

– Motion Blur, Depth of Field

• Order-independent transparency

Image courtesy: www.renderpixie.com

Reyes IS the next big thing

Real-Time Reyes

• Reyes offers abundant parallelism

• GPUs offer a flexible interface

– CUDA

– OpenCL

– DirectCompute

• What does the union look like?

Parallel Subdivision

Reyes-Style Subdivision

Split Split Dice

Grid

Parallel Subdivision: Dice

• Uniformly sample a parametric domain

• Easily parallelized

– Map thread ID to (u,v)

– Evaluate surface at (u,v)

• Direct3D 11 tessellation is similar
to dicing

For each thread,

u = (tid.x / (blockSize.x));
v = (tid.y / (blockSize.y));

P = evaluateSurface (u, v);

Store P;

For each thread,

u = (tid.x / (blockSize.x));
v = (tid.y / (blockSize.y));

P = evaluateSurface (u, v);

Store P;

Parallel Subdivision: Split

• Recursively subdivide a surface

– Not easily parallelized

• Work-queue-based approach

– [Patney and Owens 2008]

– [Eisenacher et al. 2009]

• Fixed-function Split

– [Fisher et al. 2009]

For each thread,

S = dequeue(splitQueue);

if(isSplit(S)){
dir = splitdir(S);
Snew[] = splitSurface(S,dir);
enqueue(splitQueue, Snew[]);

} else {
enqueue(diceQueue, S);

}

For each thread,

S = dequeue(splitQueue);

if(isSplit(S)){
dir = splitdir(S);
Snew[] = splitSurface(S,dir);
enqueue(splitQueue, Snew[]);

} else {
enqueue(diceQueue, S);

}

Parallel Subdivision: Split

Work-queue-based Split

AA BB CC DD EE FF GG HH II

AA AA BB CC EEEE FF HHCC

JJ KK LL

enqueue
DiceDiceDice

…… …… ……

deQueuedeQueue …… ……

readread …… ……

…… deQueuedeQueue deQueuedeQueue

Parallel Subdivision: Split

…… readread

Parallel Queuing Techniques

• Atomic operations

• Implicit
synchronization

• Slow on current
generation GPUs

Thread 0 Thread 1 Thread 2

…… …… readread

enQueueenQueue enQueueenQueue ……

writewrite ……

…… writewrite enQueueenQueue

…… …… writewrite

deQueuedeQueue …… deQueuedeQueue

readread deQueuedeQueue readread

…… readread

……

Parallel Subdivision: Split

Thread 0 Thread 1 Thread 2

enQueue 2enQueue 2 …… ……

write 0, 1write 0, 1 write 2write 2 write 3write 3

enQueue 1enQueue 1 enQueue 1enQueue 1

scan(2,1,1) = 0, 2, 3 scan(2,1,1) = 0, 2, 3

Parallel Queuing Techniques

• Scan-based updates

• Explicit
synchronization

• Currently faster,
but more involved

Parallel Subdivision

Parametric Surfaces

• Simple representation

• Restricted flexibility and
modeling ease

• 256M upolys/sec in CUDA
[Patney et al. 2008]

Parallel Subdivision

Subdivision Surfaces

• Complex, recursive definition

• Easier to model and animate

• 3M faces/sec in CUDA
[Patney et al. 2009]

Parallel Subdivision

Approximate Subdivision Surfaces

• Allow treating subdivision
surfaces as parametric

• Modeled as subdivision
surfaces

• 256M upolys/sec in CUDA!

Parallel Shading

• Execute shader at grid vertices

– Data-Parallel

– Primitive-level locality

• Vectorized shading at grid level

– Highly SIMD-friendly

– Easy access to derivatives

• Texturing similar to a polygon pipeline

– Access is more coherent

Parallel Sampling

Intersect micropolygons with jittered pixel samples

Parallel Sampling

Example Approach 1 [Zhou et al. 2009]

• For each micropolygon,

– Bound the number of samples

• Allocate space for micropolygons

• For each micropolygon,

– Test with possible samples

– Store samples

Parallel Sampling

Example Approach 2

• For each micropolygon,

– Estimate coarse bound

– Append to a global queue

• Sort global queue

• For each sample,

– Test with possible micropolygons

– Also blend samples

x,yx,ySamples x,yx,y x,yx,y x,yx,y x,yx,y x,yx,y

Parallel Composite and Filter

• Sort all samples by depth

• For each subpixel,

– Blend samples front-to-back

• For each pixel

– Blend colors and opacity of samples

x,yx,y x,yx,y x,yx,y x,yx,y x,yx,y x,yx,y

Reyes IS NOT the next big thing

Delayed Visibility

• Tessellation and Shading are data-parallel

– But a lot of micropolygons will get rejected

– Overtessellation, overshading

– Cost proportional to (depth complexity) x (resolution)

• Require efficient occlusion culling

• Application-level culling is important

Motion-Blur, Depth-of-Field

• Bounds become loose

– Low efficiency (by up to 10 times!)

• Alternative

– Distribution across time [Fatahalian et al. 2009]

Inefficient Sampling

x

t

x

t

• Varying number of samples per subpixel

• Alternative

– Parallelize compositing across individual samples

– “Segmented reduction”

Inefficient Compositing

x,yx,y x,yx,y x,yx,y x,yx,y x,yx,y x,yx,y

x,y x,y x,y

Mixing Pipelines

• Sort-middle rendering

– Compute sub-patches and assign to tiles

– Render each tile separately

– [Loop et al. 2009]

• Shading after visibility

– Generate fragments from grids

• Allowing both macro and micro polygons?

Architectural Enablers

• Caching

– Potential benefit to shading performance

• Fast atomic operations

– Convenient queuing

– Scatter accumulation

• Fixed-function additions

– Micropolygon rasterizer

– Splitter

Summary

Real-time Reyes-style rendering

• Tessellation, Shading

Well-expressed in parallel

A lot of work goes to waste

• Sampling, Composition

Can be inefficient for motion-blur, depth-of-field

Work inefficiency due to irregular workload

Conclusion

• Increasing detail in real-time graphics

– Scene complexity will continue to increase

• Reyes-style rendering will soon be feasible

– Faster graphics hardware

– Research in Parallel rendering algorithms

• A lot of scope for hybrid rendering

• Ongoing architectural evolution

Further Reading

Real-time Reyes-Style
Surface Subdivision
Patney et al. 2008

DiagSplit
Fisher et al. 2009

Data-Parallel Rasterization
of Micropolygons
Fatahalian et al. 2009

RenderAnts
Zhou et al. 2009

Real-Time Sort-Middle
Rendering
Loop et al. 2009

Acknowledgments

• John D. Owens

• Stanley Tzeng

• NVIDIA Research Fellowship

• SciDAC Institute for Ultrascale Visualization

Thanks!

Thanks!
apatney@ucdavis.edu

