
Real-Time Reyes: Programmable
Pipelines and Research Challenges

Anjul Patney

University of California, Davis

Real-Time Reyes-Style Adaptive
Surface Subdivision

Anjul Patney and John D. Owens

SIGGRAPH Asia 2008 (to appear)

http://graphics.idav.ucdavis.edu/publications/print_pub?pub_id=952

Cinematic rendering looks good
Image courtesy: Pixar

High geometric complexity
Image courtesy: Pixar

High shading complexity
Image courtesy: Pixar

Motion blur, Depth-of-field
Image courtesy: Pixar

Complex lighting
Image courtesy: Pixar

All this is slow
Image courtesy: Pixar

Our Goal

• Make it faster

– As much as possible in real time

• Use the GPU

– Massive available parallelism

– Fixed-function texture/raster units

– High Programmability

Enter Reyes

• Developed in 1980s, offline

• Pixel-accurate smooth surfaces

• Eye-space shading

• Stochastic sampling

• Order-independent transparency

Bound/Split

Dice (tessellate)

Displace

Shade

Compose

Sample

Vertex Shade

Geometry Shade

Rasterize

Fragment Shade

Blend

Depth-buffer

Reyes Direct3D 10

Bound/Split

Dice (tessellate)

Displace

Shade

Compose

Sample

• High-quality

geometry

• Convenient surface

shading

• Cinematic quality

• Well-behaved (?)

Reyes

Bound/Split

Dice (tessellate)

Displace

Shade

Compose

Sample

Reyes

• Input:

Smooth surfaces

• Output:

0.5 x 0.5 pixel quads

(micropolygons)

Outline

• Reyes Subdivision – algorithm

• Subdivision on GPU – implementation

• Results

• Limitations

Outline

• Reyes Subdivision – algorithm

• Subdivision on GPU – implementation

• Results

• Limitations

Split-Dice

• Recursively split a
surface till dicing
makes sense

• Uniformly sample it
to form a grid of
micropolygons

Split

Bound/Cull

Dice

Diceable?

No:

Split

Yes:

Dice

Dice

Grid

Micropolygon

Post-split
surface

Split-Dice is hard

• Split

–Recursive, serial

–Rapid primitive generation/destruction

• Dice

–Huge memory demand

Can we do this in parallel?

Parallel Split

A lot of
independent
operations

Regular
computation

Analogy: A Dynamic work queue

A B C D E F G H I

A A B C EE F H

Split No ActionCull

C

How can we do these efficiently?

• Creating new primitives

– How to dynamically allocate space?

• Culling unneeded primitives

– How to avoid fragmentation?

A child primitive is offset by the queue length

Our Choice – keep it simple…

A B C D E F G H I

A B C E F H A C E

…and get rid of the holes later

A B C E F H A C E

A B C E F H A C E

Scan-based compact
is fast!

(Sengupta ‘07)

Storage Issues for Dice

• Too many micropolygons

– Cannot reject early

• Screen-space buckets (tiles)

– In parallel ?

– Ideal bucket size ?

Outline

• Reyes Subdivision – algorithm

• Subdivision on GPU – implementation

• Results

• Limitations

Platform

• NVIDIA GeForce 8800 GTX

– 16 SIMD Multiprocessors

– 16KB shared memory

– 768 MB memory (no cache)

• NVIDIA CUDA 1.1

– Grids/Blocks/Threads

– OpenGL interface

Implementation Details

• Input choice: Bicubic Bézier Surfaces

– Only affects implementation

• View Dependent Subdivision every frame

– Single CPU-GPU transfer

• Final micropolygons written to a VBO

– Flat-shaded and displayed

Kernels Implemented

• Dice

– Regular, symmetric, parallel

– 256 threads per patch

– Primitive information in shared memory

• Bound/Split

– Hard to ensure efficiency

Bound/Split: Efficiency Goals

• Memory Coherence

– Off-chip memory accesses must be efficient

• Computational Efficiency

– Hardware SIMD must be maximally utilized

Memory Coherence during Split

• Compact work-queue after each iteration

– Primitives always contiguous in memory

• Structure-Of-Arrays representation

– Primitive attributes adjacent in memory

• 99.5% of all accesses fully coalesced

SIMD utilization during split

• Intra-Primitive parallelism

– Independent control points

– Negligible divergence

• Vectorized Split

– 16 Threads per patch

• 90.16% of all branches SIMD coherent

32 threads (1 warp)

Outline

• Reyes Subdivision – algorithm

• Subdivision on GPU – implementation

• Results

• Limitations

Results - Killeroo

• 14426 grids

• 5 levels of subdivision

• Bound/Split: 6.99 ms

• Dice: 7.21ms

• 29.69 frames/second
(19.92 with 16x AA)

Killeroo model courtesy: Headus Inc.

Results - Teapot

• 4823 grids

• 11 levels of subdivision

• Bound/Split: 3.46 ms

• Dice: 2.42 ms

• 60.07 frames/second
(30.02 with 16x AA)

Results – Random scenes

0

5

10

15

20

25

30

0 10000 20000

T
im

e
 (
m

s
)

Number of grids

Subdivision time
proportional to number

of micropolygons

0%

25%

50%

75%

100%

Teapot Killeroo Random

Model (30

patches)

Rendering

CUDA-OpenGL

transfer

Normal generation

Subdivision

Render time Breakdown
Rendering lots of

small triangles

Should ideally be
zero: CUDA
limitation

Results - Screen-space buckets

0

10

20

30

40

50

0

10

20

30

40

50

60

70

80

90

100

0 128 256 384 512

M
e
m

o
ry

 U
s
a
g

e
 (
M

B
)

S
u

b
d
iv

is
io

n
 T

im
e
 (
m

s
)

Bucket width (pixels)

Subdivision time Memory Usage (max.) Memory Usage (avg.)

Acceptable performance,
Small memory footprint

Outline

• Reyes Subdivision – algorithm

• Subdivision on GPU – implementation

• Results

• Limitations

Limitations

• Can’t split and dice in parallel

• Uniform dicing

• Cracks

Limitations – Uniform dicing

Limitations - Cracks

Limitations - Cracks

Conclusions

• Breadth-first recursive subdivision

– Suits GPUs

– Works fast

• Dicing Programmable tessellation is fast

– 500M micropolygons/sec

• It is time to experiment with alternate
graphics pipelines

Reyes in real-time rendering

• Visually superior to polygon pipeline

• Regular, highly parallel workload

• Extremely well-studied

• Good candidate for a real-time system?

Future Work

• Cracks, Displacement mapping

• Rest of Reyes

– Offline quality shading

– Interactive lighting

– Parallel Stochastic Sampling (Wei 2008)

– A-buffer (Myers 2007)

Thanks to

• Feedback and suggestions
– Per Christensen, Charles Loop, Dave Luebke,

Matt Pharr and Daniel Wexler

• Financial support
– DOE Early Career PI Award

– National Science Foundation

– SciDAC Institute for Ultrascale Visualization

• Equipment support from NVIDIA

Teapot
Video
Real-time footage

Killeroo
Video
Real-time footage

BACKUP SLIDES
Real-Time Reyes-Style Adaptive Surface Subdivision

CUDA Thread Structure

Image courtesy: NVIDIA CUDA Programming Guide, 1.1

CUDA Memory Architecture

Image courtesy: NVIDIA CUDA Programming Guide, 1.1

Displacement Mapping

• Fairly simple if cracks can be avoided

– Displace adjacent grids together

Shading & Lighting

• Interactive preview

– Lpics / Lightspeed

• Shaders

– Intelligent textures

– File access

• Shadows

Composite/Filter Stuff

• Stochastic sampling

– 20x speedup on a GPU (Wei 2008)

• A-buffer

Special Effects

• Motion Blur and DOF

• Global Illumination

• Ambient Occlusion

