


Anjul Patney

University of California, Davis

Real-Time Reyes
Programmable Pipelines and Research Challenges



This talk

• Parallel Computing for Graphics: In Action

• What does it take to write a programmable pipeline?

– Many questions

– Some answers

• We will focus on the Reyes pipeline



Graphics on parallel devices

• Over the years

– Increasing performance

– Increasing programmability

• How is that useful for real-time graphics?

– Improve existing pipeline

– Redesign the pipeline



Redesign the pipeline

• An Exploration

– May not be the answer for everyone

• My Goals

– Interactive performance

– High visual quality

• How should I choose a pipeline?



My real-time pipeline

• An improvement in real-time rendering

– Build around shading

– Remove existing rendering artifacts

• Desired features

– High-quality anti-aliasing

– Realistic motion-blur, depth-of-field, volume effects

– Global Illumination

– Order-independent transparency



Reyes

• Introduced 1987

• Photorealistic rendering

– Smooth surfaces

– Complex shading, lighting

– Depth of field, motion blur

– Order-independent blending

• Designed for offline use

– But favors SIMD Image courtesy: Pixar



Real-Time Reyes

Geometry

Shading

Sampling

Composition

Input

Final pixels



Step 1: Geometry

Convert input surfaces to 

micropolygons Geometry

Shading

Sampling

Composition

Input

Final pixels



Step 2: Shading

Decide colors for grid 

micropolygons

Geometry

Shading

Sampling

Composition

Input

Final pixels



Step 3: Sampling

Collect stochastic samples of 

micropolygons

Geometry

Shading

Sampling

Composition

Input

Final pixels



Step 4: Image Composition

Blend samples to get colors

Combine colors to get pixels

Geometry

Shading

Sampling

Composition

Input

Final pixels



Step 1: Geometry

Convert input surfaces to 

micropolygons Geometry

Shading

Sampling

Composition

Input

Final pixels



Input

• Higher-order surfaces

– Bézier surfaces

– NURBS

– Subdivision surfaces

• Displacement-mapped

• Animated

Hand image courtesy: Tamy Boubekeur, Christophe Schlick 



Task – Split and Dice

• Adaptively subdivide the input surface

• Tessellate when small enough

• Rinse and repeat



Challenges

• Recursive, irregular computation

– Bad for parallelism, SIMD

• Too many micropolygons

– Limited memory



Ideas

• Breadth-first Traversal

• Bucket Rendering



Works in real-time!

• Killeroo: 11532 Patches

• Split and dice in 9.8 ms

• 29.69 fps at 512 x 512

• Parametric surfaces only

• Subdivision cracks

Patney and Owens, 2008

Killeroo Model Courtesy Headus Inc.



Geometry Output – Unshaded Grids

Micropolygons

1 Grid



Step 2: Shading

Decide colors for grid 

micropolygons

Geometry

Shading

Sampling

Composition

Input

Final pixels



Task

• Run shader(s) for each grid

– Displacement

– Surface

– Light

– Volume

– Imager

• Good behavior

– Highly parallel, SIMD friendly

– Good locality behavior
Image courtesy: Saty Raghavachary 



Challenges

• Massively parallel is great

– But is it good enough?

• Shaders can be complex

– Too many instructions, conditionals

– Global illumination

– File I/O

– Arbitrary texture fetches



Ideas

• Cache redundant computation

– Across a grid

– Across frames

• Architectural support

– Virtual memory



Interactive Relighting

• Lpics [Pellacini 2005]

– Cache image-space samples

– Interactive feedback

– Manual pre-processing

• Lightspeed [Ragan-Kelley 2007]

– Shader caching

– Interactive preview

– Slow pre-processing
Images belong to respective paper authors



Output – Shaded Grids



Bust: Many micropolygons



Step 3: Sampling

Collect stochastic samples of 

micropolygons

Geometry

Shading

Sampling

Composition

Input

Final pixels



Task



Samples

1

32

4

5



• Generate samples

– Jittered grid

– Parallel Poisson sampling [Wei 2008]

• For each sample, find all intersecting micropolygons

– Raycast or Rasterize?

• Output: A (depth-sorted?) list of samples

Challenges



Step 4: Image Composition

Blend samples to get colors

Combine colors to get pixels

Geometry

Shading

Sampling

Composition

Input

Final pixels



Task 1: Blend

1

32

4

5



Task 2: Filter to get pixel colors



Challenges

• Represent the irregular work-list

– Traditionally: linked-list per sample (arbitrary size)

• Sort and Reduce

– Unequal work-items

• Generate and apply filter kernels

– Box

– Gaussian



Stencil-Routed A-buffer

Myers and Bavoil, NVIDIA, 2007



Summary: What is easy?

Geometry

Shading

Sampling

Composition

Input

Final pixels

Can be parallelized well

Highly Parallel, SIMD friendly

Good locality behavior

Parallel Poisson Sampling



Summary: What is hard?

Geometry

Shading

Sampling

Composition

Input

Final pixels

Subdivision Surfaces, cracks

Long shaders

File I/O, arbitrary textures

Raycast or Rasterize?

Sort and reduce irregular work-

lists 



Conclusion

• Reyes is promising for real-time

– Enables natural high-quality rendering

– Portions map well to current hardware

• But there are challenges

– Everything isn’t easy to implement

– Architecture limitations

• Lots of interesting questions



Thanks to

• Course organizers

• Prof. John Owens, Shubho Sengupta

• Tim Foley

• Per Christensen

• Matt Pharr



`



Realistic Effects using Reyes

• Motion-blur

– A stochastic time for each sample

– Move micropolygons accordingly

• Depth-of-field

– A stochastic lens position for each sample

– Render micropolygons accordingly

• Take many samples to ensure quality

• Adjust screen bound during subdivision



Global Illumination with Reyes

• Traditional: shadow maps, environment maps

• Raytracing [Christensen et al. 2006]

– Multi-level geometry cache

– Ray-differentials to select appropriate resolution

• Effects taken care of

– Shadows and reflections

– Ambient Occlusion



My version of the world - today

• Many SIMD Cores (16-32)

• Precious memory bandwidth

• Data-parallel (SPMD)

Memory

Program



My version of the world - tomorrow

• More cores, still SIMD (8-16)

• Memory bandwidth still precious

– But flexible access behavior

• Data-Parallel and Task-Parallel

Memory

Program

Cache?

Program
Program
Program


