
Real-Time Reyes-Style Adaptive
Surface Subdivision

Anjul Patney, John Owens

University of California, Davis

Offline Rendering

• Looks realistic

• Virtually no visible artifacts

• Renders on clusters of CPUs

– Slow: hours per frame

– Flexible rendering pipelines

Images courtesy: Pixar

Real-Time Rendering

• Looks good enough

• Minor artifacts are OK

• Renders on commodity GPUs

– Fast: 60+ frames per second

– Restrictive rendering pipeline

Images courtesy: www.ign.com

There is a gap

• Geometric complexity

– From Polygon Meshes to Smooth Surfaces

• Shading complexity

– From HLSL to RenderMan shaders

• Special Effects

– Motion Blur, depth-of-field

• Other complex effects

– Global Illumination, Subsurface scattering,
ambient occlusion

But commodity GPUs…

Vertex
Processors

Composite

Fragment
Processors

Host

Rasterization

Primitive Setup

Fragment Crossbar

Framebuffer
Ref: NVIDIA GeForce 6 Architecture

… have changed a lot

General-Purpose
Processors

Host

Thread Issue

Framebuffer

Setup / Rasterize

Thread Processor

Ref: NVIDIA G80 Architecture

How does this affect things?

• Increased programmability
– Arbitrary computation

– Dynamic memory management

– Irregular data structures

• Flexible Rendering
– Compute for graphics

– Offline quality in real-time ?

• But we must be careful

There is a gap

• Geometric complexity

– From Polygon Meshes to Smooth Surfaces

Real-Time Reyes-Style Adaptive
Surface Subdivision

Anjul Patney and John D. Owens

SIGGRAPH Asia 2008
http://graphics.idav.ucdavis.edu/publications/print_pub?pub_id=952

Outline

• Motivation

• Reyes Subdivision – algorithm

– Challenges

– Parallel formulation

• Subdivision on GPU – implementation

– Issues

– Solutions

• Results

Outline

• Motivation

Motivation

• Polygon-based Rendering is insufficient
– Undesirable artifacts, especially along silhouettes

– Complicated model representation

– Model resolution is view-independent

• Can we expect performance from irregular
computation on GPUs?

• Can GPUs support completely new pipelines?

Image courtesy: www.ign.com

Enter Reyes

• Industry standard in high-quality
rendering

• Forms the architecture beneath
RenderMan

• Pipeline features
– Input: Parametric Surfaces

– Rendering primitive: 0.5 x 0.5 pixel
micropolygons

– Adaptive tessellation

– Per-micropolygon programmable shading

– Stochastic sampling

Micropolygon
grids

Bound, Cull and Split

Dice (tessellate)

Shade

Sample and Filter

Higher-order
surfaces

Split surfaces

Shaded grids

Final Pixels

Outline

• Reyes Subdivision – algorithm

– Challenges

– Parallel formulation

Reyes Subdivision

Bound and Cull

Diceable
?

Dice

Split
No

Yes

Reyes Subdivision

Bound and Cull

Diceable
?

Dice

Split
No

Yes

Reyes Subdivision

Bound and Cull

Diceable
?

Dice

Split
No

Yes

Reyes Subdivision

Bound and Cull

Diceable
?

Dice

Split
No

Yes

Reyes Subdivision

Bound and Cull

Diceable
?

Dice

Split
No

Yes

Reyes Subdivision

Bound and Cull

Diceable
?

Dice

Split
No

Yes

Reyes Subdivision

Bound and Cull

Diceable
?

Dice

Split
No

Yes

Reyes Subdivision

Bound and Cull

Diceable
?

Dice

Split
No

Yes

Reyes Subdivision

Bound and Cull

Diceable
?

Dice

Split
No

Yes

Reyes Subdivision

Bound and Cull

Diceable
?

Dice

Split
No

Yes

Reyes Subdivision

Bound and Cull

Diceable
?

Dice

Split
No

Yes

Reyes Subdivision

Bound and Cull

Diceable
?

Dice

Split
No

Yes

Reyes Subdivision

Bound and Cull

Diceable
?

Dice

Split
No

Yes

Reyes Subdivision

Bound and Cull

Diceable
?

Dice

Split
No

Yes

Reyes Subdivision

Bound and Cull

Diceable
?

Dice

Split
No

Yes

Reyes Subdivision

Bound and Cull

Diceable
?

Dice

Split
No

Yes

What is bad?

• Depth first subdivision is recursive!

• List of primitives is not static

– Cull, split may destroy or generate primitives

• Unbounded memory

– Dicing produces a huge number of micropolygons

Can we do this in parallel?

Can we do this in parallel?

Can we do this in parallel?

• A lot of independent operations

– Our simplest model:

• 5k primitives, 1.2M micropolygons

– Massively Parallel workload

• Regular Computation

– Bound/Split/Dice all primitives together

– SPMD friendly

Parallel Reyes Subdivision

Bound and Cull

Diceable
?

Dice

SplitNo

Yes

Parallel Reyes Subdivision

Bound and Cull

Diceable
?

Dice

SplitNo

Yes

Parallel Reyes Subdivision

No

Yes

No

Bound and Cull

Diceable
?

Dice

Split

Yes

Parallel Reyes Subdivision

No

Yes

Bound and Cull

Diceable
?

Dice

SplitNo

Yes

Parallel Reyes Subdivision

No

Yes

Bound and Cull

Diceable
?

Dice

SplitNo

Yes

Parallel Reyes Subdivision

No

Yes

Bound and Cull

Diceable
?

Dice

SplitNo

Yes

Parallel Reyes Subdivision

No

Yes

Bound and Cull

Diceable
?

Dice

SplitNo

Yes

Parallel Reyes Subdivision

No

Yes

Bound and Cull

Diceable
?

Dice

SplitNo

Yes

Parallel Reyes Subdivision

No

Yes

Bound and Cull

Diceable
?

Dice

SplitNo

Yes

Parallel Reyes Subdivision

No

Yes

Bound and Cull

Diceable
?

Dice

SplitNo

Yes

Analogy: A Dynamic Work Queue

A B C D E F G H I

A A B C EE F H

Split No ActionCull

C

How can we do these efficiently?

• Creating new primitives

– How to dynamically allocate space?

• Culling unneeded primitives

– How to avoid fragmentation?

A child primitive is offset by the queue length

Our Choice – keep it simple…

A B C D E F G H I

A B C E F H A C E

…and get rid of the holes later

A B C E F H A C E

A B C E F H A C E

Scan-based compact is fast!
(Sengupta ‘07)

Work-queue stays
contiguous

Outline

• Subdivision on GPU – implementation

– Issues

– Solutions

Platform

• NVIDIA GeForce 8800 GTX

– 16 SMs, each with 32-wide effective SIMD

– 16KB shared memory per SM

– 768 MB total GPU memory, no cache

• NVIDIA CUDA 1.1

– Grid/Block/Thread programming model

– OpenGL interface through shared buffers

Implementation Details

• Input primitives – Bicubic Bézier Surfaces
– Choice of primitive only affects implementation

• View Dependent Subdivision every frame
– CPU-GPU input transfer only once

– Suitable for animating control points

• Final micropolygons sent to OpenGL as a VBO
– Flat-shaded and displayed for preview

Kernels Implemented

• Dice

– Regular, symmetric computation on a highly
parallel workload

– 256 threads per primitive

– Primitive information in shared memory

• Bound/Split

– Non-trivial to ensure efficiency in implementation

Bound/Split: Efficiency Goals

• Memory Coherence

– Off-chip memory accesses must be efficient

• Computational Efficiency

– Hardware SIMD must be maximally utilized

Memory Coherence

• After each iteration, work queue is compacted

– Primitives always contiguous in memory

• Structure-Of-Arrays representation

– Attributes across primitives adjacent in memory

• 99.5% of all accesses were fully coalesced

SIMD Utilization

• Intra-Primitive parallelism
– A primitive’s control points are

mostly independent
– Execution path divergence is

negligible

• 16 Threads per primitive
– Vectorized Bound/Split
– Use shared memory for

communication

• 90.16% of all branches were
SIMD coherent

32 threads (1 warp)

Outline

• Results

Results - Killeroo

• 11532 patches 
14426 grids

• 5 levels of subdivision

• Bound/Split: 6.99 ms

• Dice: 7.21 ms

• 4.2 frames per second
(subdivision-only: 70)

Killeroo NURBS model courtesy headus 3D tools: http://headus.com.au

Results - Teapot

• 32 patches  4823
grids

• 11 levels of subdivision

• Bound/Split: 3.46 ms

• Dice: 2.42 ms

• 12.4 frames per second
(subdivision-only: 170)

0

5

10

15

20

25

30

0 5000 10000 15000 20000

Ti
m

e
 (

m
s)

Number of grids

Total subdivision Bound / Split Dice

Results – Random Models
Subdivision time

proportional to number of
micropolygons

Overheads

0%

25%

50%

75%

100%

Killeroo Teapot Random Scene
(30 patches)

Render overhead

CUDA-OpenGL mapping
overhead

Normal generation time

Subdivision time

GPUs are inefficient at
rendering lots of small

triangles

Should ideally be zero;
this is an acknowledged

CUDA limitation

Storage Issues

• Reyes pipeline suffers from unbounded memory
demand

– A huge number of micropolygons are generated

– Transparency and Blending preclude early rejection

• Most implementations use screen-space buckets

– But how does this work in parallel?

– Large buckets present a more parallel workload

– Small buckets have a smaller memory footprint

Screen-Space Buckets

0

10

20

30

40

50

0

10

20

30

40

50

60

70

80

90

100

0 128 256 384 512

M
e

m
o

ry
 U

sa
ge

 (
M

B
)

Su
b

d
iv

is
io

n
 T

im
e

 (
m

s)

Bucket width (pixels)

Cumulative subdivision time Maximum memory footprint

Average memory footprint

Acceptable performance!
Small memory footprint!

Limitations

• All primitives must be
split before dicing

• Cracks / Pinholes

• Uniform Dicing is
wasteful

Limitations

• All primitives must be
split before dicing

Limitations

• Cracks / Pinholes

Limitations

• Uniform Dicing is
wasteful

Conclusions

• Recursive subdivision maps well to current GPUs

– And works fast!

– It is advantageous to use smooth primitives in
interactive rendering

• Fixed-function tessellation can be emulated

– Dicing is already very fast (2 Mgrids/sec)

• It’s time to experiment with alternate pipelines

Future Work

• Crack Filling

– Add dummy polygons during post-processing

• More of Reyes

– Displacement Mapping

– Offline quality Shading on GPUs

– Parallel Stochastic Sampling (Wei ‘08)

– A-buffer

Thanks to

• Feedback and suggestions from
– Per Christensen, Charles Loop, Dave Luebke, Matt

Pharr, and Daniel Wexler

• Financial support from
– DOE Early Career PI Award

– National Science Foundation

– SciDAC Institute for Ultrascale Visualization

• Equipment support from NVIDIA

BACKUP SLIDES
Real-Time Reyes-Style Adaptive Surface Subdivision

CUDA Thread Structure

Image courtesy: NVIDIA CUDA Programming Guide, 1.1

CUDA Memory Architecture

Image courtesy: NVIDIA CUDA Programming Guide, 1.1

